Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 20, 2026
-
Every year, floods cause substantial economic losses worldwide with devastating impacts on buildings and physical infrastructures throughout communities. Techniques are available to mitigate flood damage and subsequent losses, but the ability to weigh such strategies with respect to their benefits from a community resilience perspective is limited in the literature. Investing in flood mitigation is critical for communities to protect the physical and socioeconomic systems that depend on them. While there are multiple mitigation options to implement at the building level, this paper focuses on determining the optimal flood mitigation strategy for buildings to minimize flood losses within a community. In this research, a mixed integer linear programming model is proposed for studying the effects and trade-offs associated with pre-event short-term and long-term mitigation strategies to minimize the expected economic losses associated with floods. The capabilities of the proposed model are illustrated for Lumberton, North Carolina (NC), a small, socially diverse inland community on the Lumber River. The mathematically optimal building-level flood mitigation plan is provided based on the available budget, which can significantly minimize the total expected direct economic loss of the community. The results reveal important correlations among investment quantity, building-level short- and long-term mitigation measures, flood depths of various locations, and buildings’ structure. Additionally, this study shows the trade-offs between short- and long-term mitigation measures based on available budget by providing decision support to building owners regarding mitigation measures for their buildings.more » « less
-
null (Ed.)Can we infer all the failed components of an infrastructure network, given a sample of reachable nodes from supply nodes? One of the most critical post-disruption processes after a natural disaster is to quickly determine the damage or failure states of critical infrastructure components. However, this is nontrivial, considering that often only a fraction of components may be accessible or observable after a disruptive event. Past work has looked into inferring failed components given point probes, i.e. with a direct sample of failed components. In contrast, we study the harder problem of inferring failed components given partial information of some ‘serviceable’ reachable nodes and a small sample of point probes, being the first often more practical to obtain. We formulate this novel problem using the Minimum Description Length (MDL) principle, and then present a greedy algorithm that minimizes MDL cost effectively. We evaluate our algorithm on domain-expert simulations of real networks in the aftermath of an earthquake. Our algorithm successfully identified failed components, especially the critical ones affecting the overall system performance.more » « less
-
Abstract Addressing how ecosystem services (ES) are distributed among groups of people is critical for making conservation and environmental policy-making more equitable. Here, we evaluate the distribution and equity of changes in ES benefits across demographic and socioeconomic groups in the United States (US) between 2020 and 2100. Specifically, we use land cover and population projections to model potential shifts in the supply, demand, and benefits of the following ES: provision of clean air, protection against a vector-borne disease (West Nile virus), and crop pollination. Across the US, changes in ES benefits are unevenly distributed among socioeconomic and demographic groups and among rural and urban communities, but are relatively uniform across geographic regions. In general, non-white, lower-income, and urban populations disproportionately bear the burden of declines in ES benefits. This is largely driven by the conversion of forests and wetlands to cropland and urban land cover in counties where these populations are expected to grow. In these locations, targeted land use policy interventions are required to avoid exacerbating inequalities already present in the US.more » « less
An official website of the United States government

Full Text Available